为什么Token让人一头雾水?
每次聊到大模型,总绕不开一个词——Token。
“这个模型支持100K Token上下文”、“API按Token计费”、“Token越多越贵”……这些说法天天见,但Token究竟是什么?为什么有时候一个字是一个Token,有时候两个字又是一个Token?
如果你也有这样的困惑,恭喜你,这篇文章就是为你准备的。我们不讲晦涩的技术原理,只用最生活化的方式,帮你彻底搞懂Token这个AI世界的"基本单位"。
从大脑认字说起:为什么需要Token?
在解释Token之前,我们先来做个小实验。
请你快速念出这几个字:薛、赜、罅、龘。
是不是愣了几秒?甚至压根没认出来?
但如果这些字出现在词语里,比如"薛定谔"、“赜探”,你可能瞬间就能念出来。
这就是人脑的"偷懒机制"。
我们的大脑在日常生活中,喜欢把有意义的词语或短语作为一个整体来处理,而不是一个字一个字地抠。这样可以大幅节省脑力,提高理解效率。
比如"今天天气不错"这句话:
按字处理: 需要处理6个部分,还要理解它们如何组合按词处理: “今天”+“天气”+“不错”,只需处理3个有意义的单元
既然人脑可以这么做,AI当然也可以模仿。
这就是Token存在的根本原因——它是AI世界的"信息积木",让大模型可以用更高效的方式处理文字。
Token到底是什么?
简单来说,Token就是大模型理解和生成文字的最小单位。
当你输入一段话给ChatGPT或DeepSeek,它并不是直接"看懂"这些文字,而是先让一个"刀法精湛"的小弟——分词器(Tokenizer)——把文字切成一个个Token。
这切出来的Token可能是:
一个汉字:「鸡」两个汉字:「苹果」三个汉字:「孙悟空」一个标点:「。」一个单词:「apple」半个单词:「ing」
为什么这么不统一?
因为分词器在统计海量文字后发现,有些组合经常一起出现,打包处理更高效。就像你点外卖时,单点米饭+青菜+肉,不如直接点"套餐"来得方便。
分词器是怎么工作的?
分词器的训练过程,其实就是一个"找规律、建词表"的过程。
第一步:统计高频组合
分词器会分析大量文本,发现哪些字或字母经常一起出现:
「苹」「果」总是成双成对 → 打包成一个Token,编号12345「鸡」字到处乱窜,能搭配各种字 → 单独作为一个Token,编号67890英文中「i」「n」「g」经常连在一起 → 打包成Token「ing」,编号24680逗号「,」超高频 → 单独一个Token,编号13579
第二步:构建Token词表
经过海量统计,分词器会得到一个庞大的Token表,可能包含5万、10万,甚至更多Token。这个词表囊括了日常见到的各种字、词、符号。
第三步:转换与编码
当大模型工作时:
输入阶段: 分词器把文字切成Token,转换成对应的数字编号计算阶段: 大模型只需要处理这些数字输出阶段: 分词器再把数字编号转换回人类能懂的文字
这就像餐厅的分工:
分词器是"切配工",负责把食材切成合适大小大模型是"主厨",负责把处理好的食材烹饪成美味
切配工刀工越好,主厨就越省力,出菜就越快。
Token的"个性差异":为什么不同模型切法不同?
有趣的是,不同的大模型,分词方式可能截然不同。
我们可以用OpenAI提供的Tokenizer工具(tiktokenizer)来实测一下:
案例1:笑声的Token
「哈哈」→ 1个Token「哈哈哈」→ 1个Token「哈哈哈哈」→ 1个Token「哈哈哈哈哈」→ 2个Token
说明什么? 大家平时最多笑4声,第5个「哈」超出了训练数据的高频范围。
案例2:词语的Token
在DeepSeek中:
「鸡蛋」→ 1个Token「鸭蛋」→ 2个Token(鸭+蛋)「关羽」→ 1个Token「张飞」→ 2个Token(张+飞)「孙悟空」→ 1个Token「沙悟净」→ 3个Token(沙+悟+净)
这说明: 训练数据中,“鸡蛋"出现频率远高于"鸭蛋”,"关羽"和"孙悟空"作为高频词被打包,而"沙悟净"关注度相对低。
案例3:不同模型的差异
同样的字「苹」:
在DeepSeek中 → 2个Token在Qwen(千问)中 → 1个Token
为什么会这样? 因为不同模型的训练数据不同,对"什么算高频"的判断也不同。
Token的实战价值:为什么要按Token计费?
现在几乎所有大模型公司都按Token数量计费,这背后有充分的理由。
原因1:Token数量=计算量
大模型生成内容,本质是在预测"下一个Token最可能是哪个"。处理的Token越多,计算量越大,消耗的算力(GPU资源)就越多。
举个例子:
输入1000个Token的问题 + 生成500个Token的回答 = 总共1500个Token如果每个Token消耗0.001元,这次对话就是1.5元
原因2:中英文Token消耗差异巨大
由于分词器的设计,中文比英文更"费Token"。
同样表达"人工智能":
中文「人工智能」→ 4个Token(可能是:人+工+智能 或 人工+智+能)英文「Artificial Intelligence」→ 2-3个Token(Artific+ial, Intel+ligence)
这意味着: 用中文提问,可能比英文提问多花20-30%的Token费用。
实战建议:如何优化Token消耗?
精简Prompt: 避免冗余的描述,用最简洁的语言表达需求善用上下文: 在多轮对话中,避免重复已说过的内容合理设置长度限制: 如果不需要长回答,明确告诉模型"用100字回答"英文场景优先英文: 如果你的内容本身是英文,直接用英文提问更省Token
未来的分词技术:更智能的Token?
当前的Token机制并非完美。它存在一些局限:
局限1:不同语言的不公平
中文、日文等字符密度高的语言,Token消耗远高于英文。这是一个全球AI社区都在关注的公平性问题。
局限2:无法完全理解语义
分词器只是统计频率,不真正理解语义。比如"薛定谔的猫",它可能把"薛定谔"打包成一个Token,但并不知道这是个物理学概念。
未来趋势:
多语言均衡分词: 训练时考虑不同语言的特性,让Token消耗更公平语义感知分词: 结合上下文理解,而非仅靠频率统计动态Token: 根据任务类型自动调整Token的粒度
写在最后:Token不神秘,只是AI的"乐高积木"
读到这里,Token还神秘吗?
其实Token就是AI世界的"信息积木"。大模型通过计算这些积木之间的关系,推测下一个积木应该是哪个,从而生成连贯的文字。
理解Token的本质后,你会发现:
为什么大模型生成内容像"打字"? 因为它一个Token一个Token地输出为什么API按使用量计费? 因为Token数量对应计算成本为什么有时候大模型"卡住"了? 可能是在计算下一个Token的概率分布为什么不同语言成本不同? 因为Token切分方式导致的消耗差异
下次当你和AI对话时,不妨想象一下:你的每句话都在被"切配工"切成小块,送给"主厨"大模型烹饪,最后端出一道道"文字大餐"。
Token,就是这场AI盛宴的基本食材。
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享!
👇👇扫码免费领取全部内容👇👇
一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI:
1. 100+本大模型方向电子书
2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:
职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:
安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!
1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析:
2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:
3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:
三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!
路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
L5阶段:专题集丨特训篇 【录播课】
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇
2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!